
Abstract- One of the most important mechanisms for 
maintaining the life of human beings is the human circulatory 
system. This research focuses on a non-invasive technique that 
maintains high resolution and high precision of measuring 
photon in the blood stream.  We hope to obtain important 
biomedical parameters valuable for pathological diagnosis.  

In phase I, a non-invasive optical flow velocimetry is 
implemented for detecting the human circulatory system under 
the skin surface. The source of the incidence photon is He-Ne 
laser. The signal is transmitted and detected via a Y-type optical 
fiber. Optical heterodyning is used to measure the frequency 
difference between the reflection wave and the original 
incidence laser wave. Then numerical simulation using Monte 
Carlo was used in the analysis to verify the result.  

In phase II, after a velocimetry specification was decided, it 
was modeled, tested and verified using Monte Carlo simulation. 
Then the apparatus were set up as directed in the model. The 
performance of this velocimetry is satisfactory and acceptable. 
This method of implementing a  velocimetry is simple, 
convenience and fast. Thus, no prior clinical experiment is need. 
Moreover, the best reading for the reflected wave is   45°±°±°±°±2.35
°°°° . This is a real-time and continuous detecting blood flow 
velocimetry. We find that this is a reliable tool for doctors when 
doing clinical diagnosis. 
 
Key words: clinical detection, circulatory system, He-Ne laser, 
optical heterodyning. 

 
I. INTRODUCTION 

 
Noninvasive optical electrical detection techniques [1,2] 

with high resolution and high precision have become the 
important aim of many research institutes. However 
researchers are especially interest in minimizing the 
dimension of clinical detection devices. To attain this goal, at 
present the use of optical fiber has become one of the most 
important and indispensable methods. For example, we can 
use non-invasive optical oximetry [3] and fiber-optic 
fluorometer [4] to analyze the human organizations.  

Blood flow velocity is one of the important parameters 
of human circulatory system [5]. In recent year there have 
been many indirect methods proposed by many specialists to 
detect this parameter via skin surface. However, all these 
methods do not provide continuous detection. This will result 
in some restriction for their usage in some special 
applications. In recent research, coherent monochromatic 
laser light is used to incident the skin surface directly. This 
provides clinic research on blood flow velocity via the 
Doppler effect. This method can serve as a continuous non-
invasive direct detection technique. 

The earliest application of Doppler effect to detect blood 
flow velocity is published by Riva [6] and his group in the 
study of blood flow of Rabbits’ retina capillary in 1972. In 
1974, Tanaka’s group [7] extends it to the experiment of 
human body. One year later they use optical fiber to detect 

blood flow velocity. In 1978, the first detection system of 
blood flow velocity on skin surface using laser Doppler effect 
is implemented by Watkin and Holloway [8]. There are many 
papers [9-10] related to the performance and the associate 
applications on clinical detection and diagnosis.  

 However, there is little or highly any research on 
continuous detection. Moreover setting up the optical 
velocimetry is difficult and usually need bioexperiment prior 
to set up.  

To realize this aim, In phase I, we implement the blood 
flow velocimetry with fiber, laser fiber driver, and signal 
amplifier. Laser Doppler effect is used as a guideline. Besides 
this, numerical simulation using Monte Carlo is used in the 
analysis and processing. In phase II, we model a velocimetry 
specification using a Monte Carlo model. The model is tested 
and verified. Then we set up the hardware as directed in the 
model. By doing so, we hope to learn more about the 
associate mechanism on circulatory system of heart and body 
surface. Besides constructing a real-time and continuous 
detection tool, our main research aim is to find a more 
effective and reliable tool to help doctors to do clinical 
diagnosis. 
 

II. METHODOLOGY 
 

When we use coherent laser light to focus on some 
moving object, the light wave of reflection will change its 
frequency when the relative location and the velocity of this 
moving object changes. This relation is as follows: 
                       F = ( 1/2 � ) � ( Ks-Ki  ) � V                           (1) 

Ks and Ki are the propagation vectors of the scatter beam 
and incident laser beam respectively [11]. V is the velocity of 
the moving object and f is the frequency change of the 
reflective wave. Fig. 1 shows the optical setup for the two-
fiber laser Doppler anemoment. The polarized He-Ne laser 
beam is divided into incident and reference beams by the 
50/50 polarized beam splitter (BS). The reference light is 
coupled into photodiode though another beam splitter. The 
incident light is passed into the transmission fiber via the 
fiber-optic coupler toward the catheter and through the skin 
surface into the red blood cell(RBC). Based on Doppler effect,  
the scatter light frequency shifts by df (f+df) and is 
transmitted via the receiving fiber into the spectrum analyzer. 
Optical heterodyning method is used to obtain the blood flow 
velocity.  
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Fig. 1 Schematic diagram of the two-fiber Laser Doppler Anemoment 

 
Fig. 2 Sectioned view of the fiber catheter 

 

 
Fig. 3 Schematic model of skin with plane parallel epidermal and dermal 
layers. Each layer is homogeneous and has isotropic physical properties. 

 
Fig. 2 is the sectioned view of the fiber catheter. In this 

figure, the transmission fiber is perpendicular to the arm and 
the receive fiber is at an angleθwith the arm. Please note that 
the catheter does not directly contact to the arm. 
Consequently, there are three parameters in this optical 
system namely △f,θand the distance form catheter to the 
arm d. 
   A schematic model of the skin consisting of epidermis and 
dermis as two plane parallel layers with isotropic physical 
properties is shown fig.3. From this figure, we can have a 
roughly glimpse of how the laser beam propagate through the 
skin[12]. We assume that the laser beam pierce though the 
skin, and induce the scattered light. As we do not know the 
exact path taken by the laser beam when it propagate though 
the skin and the direction of the scattered light, a numerical 
method using Monte Carlo simulation may solve these 
problems. 

       Monte Carlo method is also called random process 
method. This operation shows that the recursive formula  
                           ri+1=(αri+β)MOD N                                (2) 

generates uniformly distributed random number between zero 
and N-1, with N=220=1,048,576, α=1909, and β=221,571[13]. 
the MOD operation is defined as the integer remainder of 
(αri+β)/N. the period of the pseudorandom sequence is 
N=220=1,048,576, and the limits on the seed are 1≦ro＜N. 

If the results of the simulation and our experiment are 
near identical, we can use the result of the simulation to build 
the system without performance prior bioexperiment. We use 
one way analysis of variance (one way ANOVA) and F test 
[14] to analyze and verify our results. 
 

III. RESULTS 
These are three main parameters namely △f、θand d 

in the optical system. In the measurement we discovered that  
△f  is nearly unchanged. The transducer must adhere to the 
skin surface to obtain good result. Thus d must be keep to a 
minimum. Then we focus on changes in θ angle. We took 
reading from 30° to 60° at a step increment of 5°. For each 
step 25 values were taken at 5 seconds interval. Thus a total 
of 125 seconds duration was used in each step. This 
undertaking is to ensure an unbiased in average reading. The 
measured value of each data is from peak to valley and the 
flux speed is shown in mV. The whole experiment was 
repeated with 4 different healthy subjects. Thus a total of 100 
values were recorded for each degree. The result was shown 
in fig. 4. The result showed that there is maximum value at 
45°. 

Table I shows the mean values of these four experiments. 
Statistics package, SAS was used in numerical analysis (in 
Table II) ANOVA shows that there is significant difference 
between angles. This is because the F value reaches the 
statistic threshold.  
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Fig. 4  Line shows mean 

                  
                             TABLE I   

                             The data shows the mean of the result (mV) 

 
 

Angle(degree) 30 35 40 45 50 55 60 

1st experiment 707.46 390.5 569.58 446.63 516.88 622.13 519.92

2nd experiment 286.08 495.67 377.46 318.58 316.63 409.58 538.5

3rd experiment 498.41 283.93 640.52 475.52 647.85 462.52 421.7

4th experiment 337 413.08 263.76 632.84 354.2 224.52 399.76



  
TABLE II 

ANOVA for Clinical Experiment  
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Fig.5  Line shows mean for Monte Carlo simulation 

 
TABLE III  

ANOVA result of Monte Carlo Simulation  

 
In Monte Carlo simulation, we took reading from 30° to 

60° at a step increment of 5°.  As above, this experiment was 
repeated with 4 healthy subjects. Thus, a total of 100 values 
were recorded for each degree. This situation was the same as 
clinical experiment. The result was shown in fig. 5. The result 
showed that there is a maximum value at 45°.  

The result of the computer simulation ANOVA shows 
that there is significant difference for certain angles. This is 
because the F value does not reach the statistic (see Table 
III).Therefore, the designer can decide any angle within 45°
±2.35°. This result is the same as the result with prior 
clinical experiment. 
 

IV. DISCUSSION 
 

A paper in the Flow Meas. Instrum. [11] suggested thatθ
at 45° is used to set up their optical system. From our 
experiment, we notice that if the flow is greater, the 
amplitude is greater. To support this view, we covered our 
wrist with ice for two minutes before recording. We observed 
that the flux value decreases substantially.  
 
 
 

V. CONCLUSION 
 

The performance in implementing flow velovimetry using 
Monte Carlo method or usual practice is near identical. We 
can use the result of the simulation to build the system 
without conducting prior bioexperiment. Moreover, the best 
reading for θ  is 45°±2.35° .This is a real-time and 
continuous detecting blood flow velocimetry. We find that 
this is a reliable tool for doctors when doing clinical 
diagnosis.  
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 Sum of Squares df Mean Square F value

Treatment 497316.437 6 82886.073 2.239 

Error    25658973.67 693 37025.936  

Total 26156290.11 699   

 Sum of Squares df Mean Square F value

Treatment  13624558.477 6 2270759.746 56.741

Error    2773818.954 693 40019.941  

Total 41358377.430 699   
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